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Preview
This chapter introduces models for loss severity. We shall first look at some parametric
distributions that are commonly used in modelling loss variables. We then introduce more
sophisticated models by transformations and mixing. We will also discuss various coverage
modifications on loss variables.

Key topics in this chapter:
1. Common parametric distributions for modelling severity – Exponential, Gamma,

Weibull, Pareto, Beta;

2. Coverage Modifications: Deductibles, Policy Limits, Coinsurance and Inflation;

3. Tails of distributions;

4. Transformation of random variables;

5. Mixing.

1 Parametric Continuous Distributions
In what follows, we will let X be a loss variable, i.e., a random variable that describes the
loss of a peril or the size of claim of an insurance policy. In this section, we will look at some
simple continuous, parametric distributions that could be used to model X.

1.1 Exponential Distribution

X follows an exponential distribution with mean parameter θ > 0, denoted by X ∼ Exp(θ),
if it has the following pdf:

fX(x) =
1

θ
e−

x
θ , x > 0.

• Some important distributional quantities of X ∼ Exp(θ) on the next page:
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1. Mean and Variance:
E[X] = θ, Var[X] = θ2.

2. Higher Moments:
E[Xk] = n!θk.

3. CDF:
FX(x) = 1− e−

x
θ , SX(x) = e−

x
θ , x > 0.

4. Generating Functions:

MX(t) =
1

1− θt
, t <

1

θ
,

PX(t) =
1

1− θ ln t
, t < e

1
θ .

• X ∼ Exp(θ) is memoryless : for any x, a > 0,

P(X > x+ a|X > a) = P(X > x).

• The pdf of X is decreasing in x. This may not be an optimal model for severity, since the
distribution of losses from insurance claims usually has a peak (mode) around small/in-
termediate values.

• When θ increases, more weight is placed on large values of x. The shape of the pdf appears
to be flatter, more spread out with a heavier tail ; see Figure 1.

Figure 1: The pdfs of exponential distributions with mean parameter θ = 10, 20 and 50

2



1.2 Gamma Distribution

X follows a Gamma distribution with shape parameter α > 0 and scale parameter θ > 0,
denoted by X ∼ Gamma(α, θ), if it has the following pdf:

fX(x) =
1

θαΓ(α)
xα−1e−

x
θ , x > 0,

where Γ(α) is the Gamma function:

Γ(α) :=

∫ ∞

0

tα−1e−tdt, α > 0.

Some properties about the gamma function:

1. for n ∈ N, Γ(n) = (n− 1)!;

2. for any α > 0, Γ(1 + α) = αΓ(α).

• Some important distributional quantities of X ∼ Gamma(α, θ):

1. Mean and Variance:

E[X] = αθ, Var[X] = αθ2.

2. Higher Moments:

E[Xk] =
Γ(α + k)

Γ(α)
θk.

3. Generating Functions:

MX(t) = (1− θt)−α, t <
1

θ
,

PX(t) = (1− θ ln t)−α, t < e
1
θ .

• Gamma(1, θ) = Exp(θ). In general, for any positive integer n, X ∼ Gamma(n, θ) is the
sum of n independent and identically distributed (i.i.d.) exponentially distributed
random variables with mean parameter θ, i.e.,

X = X1 +X2 + · · ·+Xn,

where {Xi}ni=1 is i.i.d. with Xi ∼ Exp(θ).

• The shape parameter α controls the skewness of the distribution. As α increases, the
mode shifts towards right and becomes less distinct. The distribution also becomes more
symmetric; see Figure 2a. If α ∈ (0, 1), the pdf is decreasing in x with mode 0.

• Similar to the exponential distribution, the scale parameter θ controls how spread out and
tail of the distribution: the higher the θ, the flatter the distribution; see Figure 2b.
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(a) α = 2, 5, 10; θ = 20 (b) θ = 10, 20, 50; α = 2

Figure 2: The pdfs of Gamma distributions with different α and θ

1.3 Weibull Distribution

The Weibull distribution is named after the Swedish physicist Waloddi Weibull. It is often
used to model the time to failure. In insurances, it is also used to model the size of excess
of loss reinsurance claims.

X follows a Weibull distribution with shape parameter α > 0 and scale parameter θ > 0,
denoted by X ∼ Weibull(α, θ), if it has the following pdf:

fX(x) =
α

θα
xα−1e−(

x
θ )

α

, x > 0.

• Some important distributional quantities of X ∼ Weibull(α, θ):

1. Mean and Variance:

E[X] = θΓ

(
1 +

1

α

)
, Var[X] = θ2

[
Γ

(
1 +

2

α

)
−
(
Γ

(
1 +

2

α

))2
]
.

2. Higher Moments:

E[Xk] = θkΓ

(
1 +

k

α

)
.

3. CDF:
FX(x) = 1− e−(

x
θ )

α

, SX(x) = e−(
x
θ )

α

, x > 0.

• Weibull(1, θ) = Exp(θ). In general, if Y ∼ Exp(θα), then X := Y 1/α ∼ Weibull(α, θ).

• The shape parameter α controls the rate of decay, and thus of tail of the distribution. The
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distribution has a heavy tail if α < 1; and a light tail if α > 1; see Figure 3a,

• If α > 1, the peak of the pdf is positive; otherwise the pdf is a decreasing function, and
thus the peak is located at 0.

• As before, the higher the value of the scale parameter θ, the more spread out the distri-
bution is; see Figure 3b.

(a) α = 0.8, 2, 4; θ = 5 (b) θ = 3, 5, 10; α = 2

Figure 3: The pdfs of Weibull distributions with different α and θ

1.4 Pareto Distribution

The Pareto distribution is named after Italian economist Vilfredo Pareto. It has two formu-
lations, two-parameter or single parameter. In the sequel, we shall refer a Pareto distribution
to as the two-parameter formulation.

1.4.1 Two-Parameter Formulation

X follows a Pareto distribution with shape parameter α > 0 and scale parameter θ > 0,
denoted by X ∼ Pareto(α, θ), if it has the following pdf:

fX(x) =
αθα

(x+ θ)α+1
, x > 0.

• Some important distributional quantities of X ∼ Pareto(α, θ):

1. Mean and Variance:

E[X] =


θ

α− 1
, if α > 1;

∞, otherwise,
, Var[X] =


αθ2

(α− 1)2(α− 2)
, if α > 2;

∞, otherwise.
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2. Higher Moments:

E[Xk] =


θkk!

(α− 1) · · · (α− k)
, if α > k;

∞, otherwise.

3. CDF:

FX(x) = 1−
(

θ

x+ θ

)α

, SX(x) =

(
θ

x+ θ

)α

, x > 0.

• Unlike the former distributions (Exponential, Gamma, and Weibull) whose pdfs decay
exponentially, the pdf of a Pareto distribution only has a power rate of decay. Hence, it
has a much heavier tail, and is often used to model loss with large or catastrophic losses.

• The shape parameter α > 0 controls the rate of decay of the pdf. The smaller the value
of α, the lower the decay rate and thus the heavier the tail it has. The higher the value
of α, the higher the pdf starts off around x = 0; see Figure 4a.

• Given a fixed α, the smaller the scale parameter θ > 0, the higher the pdf starts off around
x = 0; see Figure 4b.

• For E[Xk] to exist, the pdf should decay fast enough (α > k). Since the k-th moment
exists only for k < α, the mgf of a Pareto distribution does not exist.

(a) α = 10, 20, 30; θ = 5 (b) θ = 1, 5, 10; α = 10

Figure 4: The pdfs of Pareto distributions with different α and θ
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1.4.2 Single-Parameter Formulation

If Y ∼ Pareto(α, θ), the random variable X := Y + θ follows a single-parameter Pareto
distribution, whose pdf is given by

fX(x) =
αθα

xα+1
, x > θ.

θ > 0 determines the support of X, and is not considered as a parameter of the distribu-
tion.

Some important distributional quantities of the single-parameter Pareto distribution:

1. Mean and Variance:

E[X] =


αθ

α− 1
, if α > 1;

∞, otherwise,
, Var[X] =


αθ2

(α− 1)2(α− 2)
, if α > 2;

∞, otherwise.

2. Higher Moments:

E[Xk] =


αθk

α− k
, if α > k;

∞, otherwise.

3. CDF:

FX(x) = 1−
(
θ

x

)α

, SX(x) =

(
θ

x

)α

, x > θ.

1.5 Beta Distribution

Beta distribution has a finite support. X follows a beta distribution with shape parameters
α, β > 0, denoted by X ∼ Beta(α, β), if it has the following pdf:

fX(x) =
1

B(α, β)
xα−1(1− x)β−1, 0 < x < 1,

where B(·, ·) is the beta function defined by

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α + β)
, α, β > 0.

• The mean and variance of X ∼ Beta(α, θ) is given by :

E[X] =
α

α + β
, Var[X] =

αβ

(α + β)2(α + β + 1)
.
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• When α = β = 1, the distribution is reduced to the uniform [0, 1] distribution.

• The beta distribution is the conjugate prior of the binomial, negative binomial, and
geometric distributions. We will go through these distributions when we study frequency
models.

• When α = β, the pdf is symmetric. When α, β > 1, the mode of the distribution increases
with α, and decreases with β. Otherwise, the pdf explodes at x = 0 if α < 1, and at x = 1
if β < 1.

Figure 5: The pdfs of beta distributions with different α and β

2 Coverage Modifications
In most situations, an insurance policy does not fully cover the loss an insured suffered.
Henceforth, to model the insurance payment accurately, relevant coverage modifications
should be incorporated into the loss variable X. In this section, we shall introduce a couple
of commonly seen coverage modifications – deductibles, policy limit, and coinsurance.

2.1 Deductibles

An ordinary deductible d is the amount that the policyholder agrees to pay before the insurer
starts to cover the loss. If X > d, the insurer will pay any amount exceeding d, i.e., X − d;
otherwise, the policyholder pays the loss and the insurer does not have to pay anything.

2.1.1 Stop Loss Variable

The stop loss variable models the payment by the insurer under a deductible d, which is
defined below:
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Definition 2.1 For a loss variable X, the stop loss variable (a.k.a. payment per
loss variable) with deductible d is defined as

Y L := (X − d)+ =

{
X − d, if X > d;

0, if X ≤ d,

where x+ := max{x, 0} for any x ∈ R.

The expected value of Y L = (X − d)+ is known as the expected stop loss or expected
payment per loss , which can be computed as follows:

E[(X − d)+] =


∑
x>d

(x− d)pX(x), if X is discrete;∫ ∞

d

(x− d)fX(x)dx, if X is continuous.
(1)

Higher moments of the stop loss variable can be computed by replacing (x−d) with (x−d)k

in (1).

The survival function and the cdf of the variable Y L are given by the following:

Proposition 2.1 For the stop loss variable Y L of loss X and deductible d, we have

SY L(y) =

{
1, if y < 0;

SX(y + d), if y ≥ 0
, FY L(y) =

{
0, if y < 0;

FX(y + d), if y ≥ 0.
(2)

Proof. We only derive SY L(y), as FY L(y) = 1− SY L(y).

1. If y < 0, SY L(y) = P(Y L > y) = 1 since Y L ≥ 0.

2. If y ≥ 0, Y L > y ⇐⇒ (X − d)+ > y ⇐⇒ X > y + d. Hence,

SY L(y) = P(X > y + d) = FX(y + d).

Using Equation (2), we can derive an alternative expression of the expected stop loss:

Proposition 2.2 Let X be an integrable random variable. For any d ∈ R,

E[(X − d)+] =

∫ ∞

d

SX(x)dx.
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Proof. Since Y L = (X − d)+ ≥ 0, using Equation (4) of Chapter 1 and Equation (2), we
have

E[(X − d)+] = E[Y L] =

∫ ∞

0

SY L(y)dy =

∫ ∞

0

SX(y + d)dy =

∫ ∞

d

SX(x)dx

where the last line follows by the change of variable x = y + d.

Example 2.1 Calculate the expected stop loss with a deductible d, if the loss variable
X has the following distribution:

(a) X ∼ Exp(θ);
(b) X ∼ Pareto(α, θ) with α > 1.

Solution:
(a) Using the survival function of X ∼ Exp(θ),

E[(X − d)+] =

∫ ∞

d

SX(x)dx =

∫ ∞

d

e−
x
θ dx = θe−

d
θ .

(b) Using the survival function of X ∼ Pareto(α, θ),

E[(X − d)+] =

∫ ∞

d

SX(x)dx =

∫ ∞

d

(
θ

x+ θ

)α

dx =
θα

(α− 1)(d+ θ)α−1
.

2.1.2 Excess Loss/Payment Per Payment Variable

The excess loss variable is another random variable that evaluates the loss of an insurance
claim with a deductible d.

Definition 2.2 Let X be a loss variable. Given a fixed number d > 0 such that P(X >
d) > 0, the excess loss variable (a.k.a. payment per payment variable) is defined
by

Y P := X − d|X > d.

Remark 2.3. If P(X > d) = 0, the excess loss variable is not undefined.

The excess loss variable models the insurer’s payment in excess of a deductible d, given that
X > d. The difference between Y P and the stop loss variable Y L is as follows:

• Y L = (X − d)+ evaluates the payment the insurance company needs to pay for each
policy/loss, including those do not exceed the deductible, thus the name payment per
loss. Y L is left-censored

• For Y P = X − d|X > d, only claims that exceed the deductible are reported and
evaluated, and thus the name payment per payment. Y P is left-truncated.
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• Left-censored data vs Left-truncated data:

– Left-censored: Claims with losses less than or equal to d are still recorded, but are
recorded as 0 regardless of the actual loss amount;

– Left-truncated: Claims with losses less than or equal to d are NOT recorded.

In life contingencies where we interpret X as the lifetime of an insured, the excess loss
variable is called the residual lifetime, which is the remaining life expectancy beyond the age
d. The expected value of the excess loss variable is called the mean excess loss function.

Definition 2.3 The expected value of the excess loss variable is called the mean excess
loss (a.k.a. mean residual lifetime (MRL)) is defined as

eX(d) := E[X − d|X > d] =
E[(X − d)1{X>d}]

P(X > d)
=

E[(X − d)+]

SX(d)
.

Remark 2.4. eX(d) is always greater than or equal to the expected stop loss, E[(X − d)+].

Depending on whether the distribution of X is discrete or continuous, we can compute eX(d)
by the following:

eX(d) := E[X − d|X > d] =


∑

x>d(x− d)pX(x)

SX(d)
, if X is discrete;∫∞

d
(x− d)fX(x)dx

SX(d)
, if X is continuous.

Alternatively, regardless of the support of X, discrete or continuous, we can compute eX(d)
based on Proposition 2.2:

eX(d) =
E[(X − d)+]

SX(d)
=

∫∞
d

SX(x)dx

SX(d)
.

Proposition 2.5 For the payment per payment variable Y P of loss X and deductible
d, we have

SY P (y) =


1, if y < 0;

SX(y + d)

SX(d)
, if y ≥ 0

, FY P (y) =


0, if y < 0;

FX(y + d)− FX(d)

1− FX(d)
, if y ≥ 0.

(3)

Proof. Again, we only derive SY P (y). Notice that Y P = X − d|X > d = X − d|X − d > 0 =
Y L|Y L > 0, since X − d implies Y L = X − d. Using this, we have:
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1. If y < 0, SY P (y) = P(Y L > y|Y L > 0) = 1.

2. If y ≥ 0, Y L > y ⇐⇒ (X − d)+ > y ⇐⇒ X > y + d. Hence, using Equation (6),

SY P (y) = P(Y L > y|Y L > 0) =
P(Y L > y, Y L > 0)

P(Y L > 0)

=
P(Y L > y)

P(Y L > 0)
=

SY L(y)

SY L(0)
=

SX(y + d)

SX(d)
.

Example 2.2 Calculate the mean excess loss with a deductible d, if the loss variable X
has the following distribution:

(a) X ∼ Exp(θ);
(b) X ∼ Pareto(α, θ) with α > 1.

Solution:
(a) Using Example 2.1, we can compute the mean excess loss by

eX(d) =
E[(X − d)+]

SX(d)
=

θe−
d
θ

e−
d
θ

= θ.

(b) Similarly, the mean excess loss for X ∼ Pareto(α, θ) is given by

eX(d) =
E[(X − d)+]

SX(d)
=

θα

(α−1)(d+θ)α−1(
θ

d+θ

)α =
d+ θ

α− 1
.

2.1.3 Franchise Deductible

When a policy has a franchise deductible of amount d > 0, the policyholder has to pay the
loss if X ≤ d; otherwise, if X > d, the insurer will cover the entire loss X (instead of X − d
for ordinary deductibles). We can define the payment per loss and payment per payment
variables as follows.

Definition 2.4 Let d be the amount of a franchise deductible. The payment per loss
variable is defined as

Y L :=

{
0, if X ≤ d;

X, if X > d
= X1{X>d} = (X − d)+ + d1{X>d}.
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The payment per payment variable is defined as

Y P := X|X > d.

The expected payment per loss, and the expected payment per payment with a franchise
deductible can be computed by

E[Y L] =


∑
x>d

xpX(x), if X is discrete;∫ ∞

d

xfX(x)dx, if X is continuous,

E[Y P ] =
E[Y L]

SX(d)
.

Alternatively, one can relate the expected payments of franchise deductible with an ordinary
deductible as follows:

E[Y L] = E[(X − d)+] + dSX(d),

E[Y P ] =
E[(X − d)+] + dSX(d)

SX(d)
= eX(d) + d,

where eX(d) is the mean excess loss with an ordinary deductible d.

We can also compute the cdf and the survival function of the payment per loss variable under
a franchise deductible:

Proposition 2.6 For the payment per loss variable Y L of loss X and deductible d, we
have

SY L(y) =


1, if y < 0;

SX(d), if 0 ≤ y < d;

SX(y), if y ≥ d

, FY L(y) =


0, if y < 0;

FX(d), if 0 ≤ y < d;

FX(y), if y ≥ d.

Proof. We derive the cdf of Y L.

1. If y < 0, FY L(y) = 0 since Y L ≥ 0.

2. If 0 ≤ y < d, Y L ≤ y ⇐⇒ X ≤ d. Hence, FY L(y) = P(X ≤ d) = FX(d).

3. If y > d, Y L > y ⇐⇒ X > y. Hence, SY L(y) = P(X > y) = SX(y), and thus
FY L(y) = FX(y).
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Example 2.3 A loss variable follows a continuous distribution with the following pdf:

fX(x) =
4(100− x)3

1004
, 0 < x < 100.

Find the expected payment per loss, and the expected payment per payment with a
franchise deductible d = 20.
Solution: The expected payment per loss is given by

E[Y L] = E[X1{X>20}]

=

∫ 100

20

4x(100− x)3

1004
dx

=

∫ 100

20

−4(100− x)4 + 400(100− x)3

1004
dx

=
1

1004

[
4

5
(100− x)5 − 100(100− x)4

]100
20

= 36(0.8)4 = 14.7456.

To calculate the expected payment per payment, we consider

SX(20) =

∫ 100

20

4(100− x)3

1004
dx = −(100− x)4

1004

∣∣∣∣100
20

= 0.84.

Therefore, the expected payment per payment is given by

E[Y P ] =
E[Y L]

SX(20)
=

36(0.8)4

0.84
= 36.

2.2 Policy Limits

When a policy limit of amount u is imposed, the insurer is only responsible to cover the
loss up to u, and any exceeding amount X − u would be retained by the policyholder. The
limited loss variable defined below models the payment the insurer needs to make under a
policy limit u:

Definition 2.5 The limited loss variable with a policy limit u is defined by

Y := X ∧ u = min{X, u},

where a ∧ b := min{a, b} for any a, b ∈ R.
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The limited loss variable is right-censored : losses above u are recorded, but are recorded
as u. Depending on the support of the loss variable X, we can compute the k-th moment of
the limited loss variable as follows.

E[(X ∧ u)k] =


∫ u

−∞
xkfX(x)dx+ ukSX(u), if X is continuous;∑

x≤u

xkpX(x) + ukSX(u), if X is discrete.
(4)

Proof. If X is continuous,

E[(X ∧ u)k] =

∫ ∞

−∞
(x ∧ u)kfX(x)dx

=

∫ u

−∞
xkfX(x)dx+

∫ ∞

u

ufX(x)dx

=

∫ u

−∞
xkfX(x)dx+ uSX(u).

Similarly, if X is discrete,

E[(X ∧ u)k] =
∑
x

(x ∧ u)kpX(x)

=
∑
x≤u

xkpX(x) +
∑
x>u

ukpX(x)

=
∑
x≤u

xkpX(x) + ukSX(u).

Example 2.4 Let X ∼ Pareto(α, θ), where α ̸= 1, compute E[X ∧ u].
Solution:
By Proposition 2.7, we have

E[X ∧ u] =

∫ u

0

xfX(x)dx+ uSx(u)

=

∫ u

0

x

(
αθα

(x+ θ)α+1

)
dx+ u

(
θ

u+ θ

)α

= αθα
∫ u

0

x dx

(x+ θ)α+1
+ u

(
θ

u+ θ

)α
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= αθα
∫ u

0

(
1

(x+ θ)α
− θ

(x+ θ)α+1

)
dx+ u

(
θ

u+ θ

)α

= αθα
(

1

α− 1

(
1

θα−1
− 1

(u+ θ)α−1

)
− θ

α

(
1

θα
− 1

(u+ θ)α

))
+ u

(
θ

u+ θ

)α

=
θ

α− 1
− θα(αu+ θ)

(α− 1)(u+ θ)α
+ u

(
θ

u+ θ

)α

=
θ

α− 1

(
1−

(
θ

u+ θ

)α−1
)
.

The stop loss variable and the limited loss variable are related by the following:

(X − d)+ +X ∧ d = X. (5)

Equation (5) can be shown as follows: if X < d, we have (X − d)+ = 0 and X ∧ d = X, and
thus (X − d)+ +X ∧ d = X; if X ≥ d, (X − d)+ = X − d and X ∧ d = d, which again sums
to X. Intutively, Equation (5) means that, a policy with a deductible d, along with a policy
with a policy limit d, renders a full-coverage policy.

Proposition 2.7 If X is a non-negative random variable. Then, for any u ≥ 0,

E[X ∧ u] =

∫ u

0

SX(x)dx.

Proof. Using Equation (5), Proposition 2.2, and Equation (4) of Chapter 1, we have

E[X ∧ u] = E[X]− E[(X − u)+]

=

∫ ∞

0

SX(x)dx−
∫ ∞

u

SX(x)dx =

∫ u

0

SX(x)dx.

We can also find the cdf and the survival function of Y :

Proposition 2.8 For the limited loss variable Y for the loss X with policy limit u, we
have

SY (y) =

{
SX(y), if y < u;

0, if y ≥ u
, FY (y) =

{
FX(y), if y < u;

1, if y ≥ u.
(6)
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Proof. We derive the cdf of Y :

1. If y < u, we have Y ≤ y ⇐⇒ X ∧ u ≤ y ⇐⇒ X ≤ y, which implies FY (y) = P(X ≤
y) = FX(y).

2. If y ≥ u, since Y = X ∧ u ≤ u < y, we have FY (y) = 1.

Using Equation (6), we also have the following formula to compute higher moments of the
limited loss variable:

Proposition 2.9 If X is a non-negative random variable. Then, for any u ≥ 0,

E[(X ∧ u)k] =

∫ u

0

kxk−1SX(x)dx.

Proof. By Theorem 4.1 of Chapter 1, and also Equation (6), we have

E[(X ∧ u)k] =

∫ ∞

0

kyk−1SY (y)dy

=

∫ u

0

kyk−1SX(y)dy +

∫ u

0

kyk−1 × 0dy

=

∫ u

0

kyk−1SX(y)dy.

2.3 Loss Elimination Ratio

For an insurance policy with a deductible d, the loss elimination ratio computes proportion
of the expected loss that is not covered by the insurer:

Definition 2.6 The loss elimination ratio (LER) of a policy with loss variable X
and (ordinary) deductible d is defined as

LERX(d) :=
E[X]− E[(X − d)+]

E[X]
=

E[X ∧ d]

E[X]
.

Example 2.5 Let X ∼ Pareto(α, θ), where α > 1. Compute LERX(d).
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Solution:
From Example 2.4, we have shown that

E[X ∧ d] =
θ

α− 1

(
1−

(
θ

d+ θ

)α−1
)
.

Since E[X] = θ/(α− 1), we have

LERX(d) =
E[X ∧ d]

E[X]
=

θ
α−1

(
1−

(
θ

d+θ

)α−1
)

θ
α−1

= 1−
(

θ

d+ θ

)α−1

.

Example 2.6 (SOA EXAM STAM SAMPLE Q87 MODIFIED) Suppose that a
loss variable X has a pdf given by

fX(x) =


0.01, if 0 < x ≤ 80;

0.01
(
3− x

40

)
, if 80 < x ≤ 120;

0, otherwise.

Calculate the loss elimination ratio for a deductible of 20.
Solution:
We first compute E[X]:

E[X] =

∫ 120

0

xfX(x)dx

=

∫ 80

0

0.01xdx+

∫ 120

80

0.01x
(
3− x

40

)
dx

= 32 +
56

3
=

152

3
.

Next, we compute SX(20) and E[X ∧ 20]:

SX(20) = 1− FX(20) = 1−
∫ 20

0

fX(x)dx = 1−
∫ 20

0

0.01dx = 0.8,
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and

E[X ∧ 20] =

∫ 20

0

xfX(x)dx+ 20SX(20)

=

∫ 20

0

0.01xdx+ 20(0.8)

= 2 + 16 = 18.

Therefore, the LER is given by

LERX(20) =
E[X ∧ 20]

E[X]
=

18

152/3
= 0.3553.

2.4 Coinsurance and Inflation

An insurance policy with a coinsurance factor α ∈ (0, 1] means the insurance company is
paying α of the costs after accounting for deductibles and policy limit, if any.

Definition 2.7 The payment per loss variable Y L for a loss X, with a deductible d, a
maximum covered loss u > d, and a coinsurance factor α ∈ (0, 1], is defined as

Y L :=


0, if X < d;

α(X − d), if d ≤ X < u;

α(u− d), if X ≥ u

= α (X ∧ u−X ∧ d) .

Remark 2.10. The value u is said to be the maximum covered loss. This means that any
loss exceeding u will not be covered. The maximum payment made is α(u− d).

Similar to the derivation of Equation (4), the k-th moment of Y L can be computed as
follows.

E[(Y L)k] =


∫ u

d

αk(x− d)kfX(x)dx+ αk(u− d)kSX(u), if X is continuous;∑
d<x≤u

αk(x− d)kpX(x) + αk(u− d)kSX(u), if X is discrete.

Sometimes we may want to multiply the loss variable by a growth factor 1+ r, where r > 0.
Indeed, X often represents the loss distribution at the current time point (e.g. at policy
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issuance). The actual loss in the future can be higher due to inflation, despite the shape of
the loss distribution remains unchanged. Notice that, when adjusting for inflation for X,
the deductible d and the maximum covered loss u remain unchanged.

Definition 2.8 The payment per loss variable Y L for a loss X, with a deductible d, a
maximum covered loss u, a coinsurance factor α, and an inflation rate r, is defined as

Y L :=


0, if (1 + r)X < d;

α((1 + r)X − d), if d ≤ (1 + r)X < u;

α(u− d), if (1 + r)X ≥ u

= α(1 + r)

(
X ∧ u

1 + r
−X ∧ d

1 + r

)
.

Example 2.7 The loss from an insurance policy for the year 2023 follows a Pareto
distribution with shape parameter 3 and scale parameter 150. The insurance policy
pays the loss above an ordinary deductible of 40, a maximum covered loss of 200, and
a coinsurance factor of 90%. The loss size is expected to be 5% larger in 2024, but
the insurance in 2024 has the same deductible, maximum covered loss, and coinsurance
factor as in 2023. Find the percentage increase in the expected payment per loss from
2023 to 2024.
Solution:
In 2023, the loss distribution is X ∼ Pareto(3, 150), and the payment per loss variable is

Y L
2023 = 0.9 (X ∧ 200−X ∧ 40) .

From Example 2.4, we know that

E[X ∧ u] =
150

3− 1

(
1−

(
150

u+ 150

)3−1
)

= 75

(
1−

(
150

u+ 150

)2
)
.

Hence,

E[Y L
2023] = 0.9 (E[X ∧ 200]− E[X ∧ 40])

= 0.9

(
75

(
1−

(
150

200 + 150

)2
)

− 75

(
1−

(
150

40 + 150

)2
))

= 29.6727.

In 2024, the payment per loss variable is

Y L
2024 = 0.9× 1.05×

(
X ∧ 200

1.05
−X ∧ 40

1.05

)
.
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Hence,

E[Y L
2024] = 0.9× 1.05×

(
E
[
X ∧ 200

1.05

]
− E

[
X ∧ 40

1.05

])
= 0.945

(
75

(
1−

(
150

200/1.05 + 150

)2
)

− 75

(
1−

(
150

40/1.05 + 150

)2
))

= 31.3171.

The percentage increase is thus

E[Y L
2024]

E[Y L
2023]

− 1 =
31.3171

29.6727
− 1 = 5.5417%.

3 Tails of Distributions
In Section 1, we often discussed about the tail of a distribution, which roughly means the
weight the distribution puts on large values. A heavy-tailed distribution, e.g., the Pareto
distribution, has a pdf which decays slowly with a considerable weight being put on large
values. These distributions can be used to model catastrophic losses. In contrast, the pdf of
a light-tailed distribution decays relatively fast. In this section, we provide different ways to
compare tails of different distributions.

3.1 Comparison based on Moments

Recall that the k-th raw moment of a random variable X is defined as

µ′
k = E[Xk] =

∫ ∞

−∞
xkfX(x)dx.

The integral exists if xkfX(x) decays fast enough as x → ±∞. We thus have the following
classification:

µ′
k exists for all k ∈ N ⇒ a (relatively) light-tailed distribution

µ′
k exists only up to k ≤ N for some N ⇒ a (relatively) heavy-tailed distribution

Example 3.1 The gamma, exponential, and the Weibull distributions have moments
of all orders. They thus have lighter tails than the Pareto distribution (Pareto(α, θ)),
where the k-th moment does not exist if k > α.
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3.2 Comparison based on Survival Functions

In Example 3.1, we see that all gamma, exponential, and the Weibull distributions have
moments of all orders. If we want to compare the tails of distributions, solely based on
moments would not be sufficient. To give more sophisticated comparisons of tails, we can
make use of the survival functions.

Let X and Y be random variables with survival function SX and SY , respectively. Sup-
pose that the following limit exists:

lim
t→∞

SX(t)

SY (t)
= c ∈ [0,∞].

We can make the following comparison:
• c = 0 ⇒ SY decays much slower than SX as t → ∞ ⇒ Y has a heavier tail than X;
• c = ∞ ⇒ SY decays much faster than SX as t → ∞ ⇒ Y has a lighter tail than X;
• c ∈ (0,∞) ⇒ SY and SX decays at similar rate as t → ∞ ⇒ X and Y have similar

tails.

By L’Hôpital’s rule, the limit can also be computed as follows:

c = lim
t→∞

SX(t)

SY (t)
= lim

t→∞

S ′
X(t)

S ′
Y (t)

= lim
t→∞

fX(t)

fY (t)
. (7)

Example 3.2 Let X ∼ Exp(θ), Y ∼ Gamma(α, θ), and Z ∼ Weibull(α, θ). Assume
that α ̸= 1, compare the tails of X, Y , and Z based on their survival functions or pdfs.
Solution:
Using (7), it suffices to consider the rations of their pdfs. We first compare the tails of
X and Y :

lim
t→∞

fX(t)

fY (t)
∝ lim

t→∞

e−
t
θ

tα−1e−
t
θ

= lim
t→∞

t1−α =

{
∞, if α < 1;

0, if α > 1.

Hence, X has a heavier tail than Y if α < 1, a lighter tail if α > 1. Next, we compare X
and Z:

lim
t→∞

fZ(t)

fX(t)
∝ lim

t→∞

tα−1e−(
t
θ )

α

e−
t
θ

= lim
t→∞

tα−1e−(
t
θ )

α
+ t

θ =

{
∞, if α < 1;

0, if α > 1.

Hence, Z has a heavier tail than X if α < 1, a lighter tail if α > 1.
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To conclude:
• If α < 1, Z has the heaviest tail, X has the second heaviest tail, and Y has the lightest

tail;
• If α > 1, Y has the heaviest tail, X has the second heaviest tail, and Z has the lightest

tail;

3.3 Comparison based on Hazard Rate Functions

The hazard rate function defined below provides another way to describe the tail of a distri-
bution.

Definition 3.1 The hazard rate function of a continuous random variable X is de-
fined as

hX(x) := − d

dx
ln(SX(x)) =

fX(x)

SX(x)
.

The hazard rate function can be interpreted as follows. For any x ∈ R, and any small
increment dx > 0,

hX(x)dx =
fX(x)dx

SX(x)
≈ P(x < X ≤ x+ dx)

P(X > x)
= P(x < X ≤ x+ dx|X > x).

In other words, it measures the likelihood that the severity X will be around x, given that
it is at least x. We have the following definition depending on the monotonicity of hX .

Definition 3.2 The distribution of X is said to have a decreasing failure rate (DFR)
if hX is a non-increasing function. It is said to have a increasing failure rate (IFR)
if hX is a non-decreasing function.

We have the following interpretations:

• If X has a DFR, the probability that X ∈ (x, x+ dx] given that X > x is decreasing.
Hence, as x increases, it is more likely that X > x+ dx given X > x. This indicates
that X has a heavy tail.

• If X has an IFR, the probability that X ∈ (x, x+ dx] given that X > x is increasing.
Hence, as x increases, it is less likely that X > x + dx given X > x. This indicates
that X has a light tail.

To conclude, we have:

Distribution of X has a DFR ⇒ X has a heavy tail,
Distribution of X has an IFR ⇒ X has a light tail.
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Example 3.3 Based on the hazard rate functions, classify the tailedness of the exponen-
tial, the Weibull, and the Pareto distributions, and whether each of these distributions
has a DFR or IFR.
Solution:
For X ∼ Exp(θ),

hX(x) =
fX(x)

SX(x)
=

1
θ
e−

x
θ

e−
x
θ

=
1

θ
,

which is a constant function. In this case, we can say that the exponential distribution
has a medium tail.

For X ∼ Weibull(α, θ),

hX(x) =
fX(x)

SX(x)
∝ xα−1e−(

x
θ )

α

e−(
x
θ )

α = xα−1,

which is an increasing function if α > 1, and a decreasing function if α < 1. Hence,
the Weibull distribution has an IFR, and a light tail if α > 1; and it has a DFR, and a
heavy tail if α < 1.

For X ∼ Pareto(α, θ),

hX(x) =
fX(x)

SX(x)
∝

1
(x+θ)α+1(

θ
x+θ

)α ∝ 1

x+ θ
,

which is a decreasing function. Hence, the Pareto distribution has a DFR, and is a
heavy-tailed distribution.

3.4 Comparison based on Mean Excess Loss

The mean excess loss function eX can be used to discuss the tailedness of a distribution in a
way similar to using the hazard rate function hX : whether eX(·) is an increasing/decreasing
function.

Definition 3.3 The distribution of the loss variable X is said to have an increasing
mean residual lifetime (IMRL) if eX(d) is a non-decreasing function of d. It is said
to have a decreasing mean residual lifetime (DMRL) if eX(d) is a non-increasing
function of d.

Following the same deduction as using the hazard rate function, we can decide the tailedness
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of X as follows:

Distribution of X has an IMRL ⇒ Residual loss is non-decreasing ⇒ X has a heavy tail,
Distribution of X has an DMRL ⇒ Residual loss is non-increasing ⇒ X has a light tail.

Example 3.4 Discuss the tailedness of the X ∼ Pareto(α, θ) with α > 1 using the mean
excess loss function.
Solution:
From Example 2.2, we have shown that eX(d) =

d+θ
α−1

, which is an increasing function of
d. Hence, the distribution has an IMRL, and thus a heavy tail.

The following result states the relationship between DFR/IFR and IMRL/DMRL, whose
proof is omitted.

Theorem 3.1 If the distribution of X has a DFR, then it has an IMRL. If the distri-
bution of X has an IFR, then it has a DMRL.

Remark 3.2.

1. As a consequence of Theorem 3.1, if the distribution of X has a heavy (resp. light)
tail based on hazard rate function, then it also has a heavy (resp. light) tail based on
MRL.

2. The converse of Theorem 3.1 is not true: IMRL ̸⇒ DFR, and DMRL ̸⇒ IFR.

4 Transformations of Distributions
In addition to the simple parametric models introduced in Section 1, we can apply transfor-
mations to those distributions to generate more distributions to model severity.

4.1 Scaling

New distributions can be generated by multiplying the old one with a scalar c > 0. Given
the cdf of X, FX , the cdf of Y := cX can be derived as follows:

FY (y) = P(Y ≤ y) = P(cX ≤ y) = P
(
X ≤ y

c

)
= FX

(y
c

)
,

where the support of Y is given by Supp(Y ) = {y : y/c ∈ Supp(X)}. If X is continuous, we
can also obtain the pdf of Y by differentiation:

fY (y) =
1

c
fX

(y
c

)
, y ∈ Supp(Y ).
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Definition 4.1 A random variable X belongs to a scale family of distributions, if the
distribution of cX also belongs to the same family, perhaps with a different parameter.

Example 4.1 Show that each of the following distributions form a scale family: expo-
nential, gamma, Weibull, and the Pareto distribution.
Solution:
• If X ∼ Exp(θ), then for c > 0, the cdf of Y = cX is given by

FY (y) = FX

(y
c

)
= 1− e−

y/c
θ = 1− e−

y
cθ , y > 0,

whence Y ∼ Exp(cθ).
• If X ∼ Gamma(α, θ), then for c > 0, the pdf of Y = cX is given by

fY (y) ∝ fX

(y
c

)
=
(y
c

)α−1

e−
y/c
θ ∝ yα−1e−

y
cθ , y > 0,

whence Y ∼ Gamma(α, cθ).
• Similarly, if X ∼ Weibull(α, θ), then Y = cX ∼ Weibull(α, cθ). If X ∼ Pareto(α, θ),
Y = cX ∼ Pareto(α, cθ).

Remark 4.1. Form Example 4.1, we see that the scale parameters for those new distributions
being considered are c times the original ones, while the shape parameters (if any) remain
unchanged. This also suggests why we call θ the scale parameter.

4.2 One-to-One Transformations

In general, we can construct new distributions by applying an one-to-one function on the
old one. Let g : R → R be a strictly increasing or decreasing function, and X be a random
variable with known distribution. Then, we can derive the cdf of Y = g(X) as follows:

• If g is strictly increasing,

FY (y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g
−1(y)),

where y ∈ Supp(Y ) = {y = g(x) : x ∈ Supp(X)}.

• If g is strictly decreasing,

FY (y) = P(g(X) ≤ y) = P(X ≥ g−1(y)).

If X is continuous, we further have

FY (y) = SX(g
−1(y)).
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If g is differentiable and X is continuous, we can obtain the pdf of Y by differentiation:

fY (y) =


fX
(
g−1(y)

) dg−1(y)

dy
, if g is strictly increasing,

−fX
(
g−1(y)

) dg−1(y)

dy
, if g is strictly decreasing

= fX
(
g−1(y)

) ∣∣∣∣dg−1(y)

dy

∣∣∣∣ .
Here, the term |dg−1(y)/dy| is called the Jacobian of the transformation.

Example 4.2 Let X ∼ Exp(θ). Determine the distribution of Y := θ(eX − 1).
Solution:
Let g(x) := θ(ex − 1). Notice that g is strictly increasing, with g(0) = 0 and g(x) → ∞
as x → ∞. Hence, the support of Y is (0,∞). Next, we deduce the cdf of Y :

FY (y) = P(θ(eX − 1) ≤ y)

= P
(
X ≤ ln

(y
θ
+ 1
))

= 1− exp

(
−
ln
(
y
θ
+ 1
)

θ

)

= 1−
(

1
y
θ
+ 1

) 1
θ

= 1−
(

θ

y + θ

) 1
θ

, y > 0.

In other words, Y ∼ Pareto(1/θ, θ).

Example 4.3 Let X ∼ Exp(θ). Find the pdf of Y := Xτ , where τ > 0.
Solution:
Let g(x) := xτ , which is strictly increasing with g(0) = 0 and g(x) → ∞ as x → ∞.
Hence, the support of Y is (0,∞). Notice that g−1(y) = y1/τ , we have

dg−1(y)

dy
=

1

τ
y

1
τ
−1.
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By the change of variable formula, we arrive at

fY (y) = fX(y
1/τ )

(
1

τ
y

1
τ
−1

)
=

(
1

θ
e−

y1/τ

θ

)(
1

τ
y

1
τ
−1

)
=

1/τ

(θτ )1/τ
y

1
τ
−1 exp

(
−
( y

θτ

) 1
τ

)
, y > 0.

In other words, Y ∼ Weibull(1/τ, θτ ).

Example 4.4 (Log-normal Distribution) Let X be a continuous random variable that
follows a normal distribution with mean µ and variance σ2, i.e., X ∼ N (µ, σ2) with the
following pdf:

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , x ∈ R.

The random variable Y := eX is said to follow a log-normal distribution with param-
eter µ and σ2, denoted by Y ∼ Lognormal(µ, σ2). Find the pdf of Y .
Solution:
Since X is supported in R, the support of Y = g(X) := eX is (0,∞). By writing
x = g−1(y) := ln y, the pdf of Y is given by

fY (y) = fX(ln y)
d ln y

dy

=
1

y
√
2πσ2

e−
(ln y−µ)2

2σ2 , y > 0.

One can also show that

E[Y ] = eµ+
σ2

2 and Var[Y ] = (eσ
2 − 1)e2µ+σ2

.

5 Mixing
Mixing is another way to create a new distribution by aggregating a finite set of cdfs/pdf-
s/pmfs. Depending on the method of aggregation, we can divide the method into discrete
mixing and continuous mixing. Writing the unconditional distribution of a loss variable X
in terms of the conditional ones is an example of mixing.
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5.1 Discrete Mixing

Definition 5.1 X is said to follow a (countable) mixture distribution if its cdf can
be written as

FX(x) =
n∑

i=1

wiFXi
(x), (8)

where for each i = 1, 2 . . . , n, FXi
is the cdf of the random variable Xi and wi ≥ 0, with∑n

i=1wi = 1.

Remark 5.1. Equation (8) does NOT imply X =
∑n

i=1wiXi.

Depending on the support of each Xi, we can express the pmf/pdf of X based on Equation
(8):

1. If the support of each Xi is continuous, then the pdf of X is given by

fX(x) =
n∑

i=1

wifXi
(x).

2. If the support of each Xi is discrete, then the pmf of X is given by

pX(x) =
n∑

i=1

wipXi
(x).

In Section 1, we have learnt a couple of parametric distributions, where the distribution of
X depends on some parameters, say λ. The parameter λ therein is assumed to be known in
advance. In practice, the parameter needs to be calibrated, and can be treated as a random
variable, Λ. Given Λ = λ, we are able to model the distribution of X using a parametric
distribution, X|Λ = λ. If Λ follows a discrete distribution with pmf pΛ(λ), then by the law
of total probability, the unconditional cdf of X can be written as follows:

FX(x)︸ ︷︷ ︸
unconditional cdf

=
∑
i

FX|Λ(x|λi)︸ ︷︷ ︸
parametric distribution

mixing distribution︷ ︸︸ ︷
pΛ(λi) . (9)

Equation (9) can be considered as a mixture distribution, where Xi = X|Λ = λi, and
wi = pΛ(λi). Depending on the support of X|Λ = λi, we can express the pdf/pmf of X as
follows:
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fX(x) =
n∑
i

fX|Λ(x|λi)pΛ(λi), if X,X|Λ are continuous,

pX(x) =
n∑
i

pX|Λ(x|λi)pΛ(λi), if X,X|Λ are discrete.

Example 5.1 The loss X for an insurance coverage follows a distribution which is a
mixture of an exponential distribution with mean 10 with 80% weight, and an exponential
distribution with mean 100 with 20% weight.

(a) Calculate the probability that the loss is greater than 20.
(b) Find the mean of the loss.
(c) If the loss is covered by an insurance with a deductible 20. Find the expected

payment per loss.
Solution:

(a) The cdf of the loss is given by

FX(x) = 0.8e−
x
10 + 0.2e−

x
100 .

The required probability is thus

P(X > 20) = 1− FX(20) = 1−
(
0.8e−

20
10 + 0.2e−

20
100

)
= 0.72799.

(b) The unconditional mean of X is the weighted sum of the conditional mean:

E[X] = 0.8× 10 + 0.2× 100 = 28.

Indeed, let Θ be the random variable of the mean parameter. We have pΘ(10) = 0.8
and pΘ(100) = 0.2. Notice that E[X|Θ] = Θ. Hence, by the law of iterated
expectation,

E[X] = E[E[X|Θ]] = E[Θ] = 0.8× 10 + 0.2× 100 = 28.

(c) Notice that with probability 0.8, X has the same distribution as X1 ∼ Exp(10),
and with probability 0.2, X has the same distribution as X2 ∼ Exp(100). Hence,

E[(X − 20)+] = 0.8E[(X1 − 20)+] + 0.2E[(X2 − 20)+].

To find E[(X1 − 20)+], we can condition on the event X1 ≤ 20 and X1 > 20:
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E[(X1 − 20)+]

= E[(X1 − 20)+|X1 ≤ 20]P(X1 ≤ 20) + E[(X1 − 20)+|X1 > 20]P(X1 > 20)

= P(X1 > 20)E[X1 − 20|X > 20]

= e−
20
10 (10)

= 10e−2,

where the second last equality follows from the memoryless property of the expo-
nential distribution. Similarly, we can derive

E[(X2 − 20)+] = P(X2 > 20)E[X2 − 20|X > 20] = 100e−0.2.

Therefore,

E[(X − 20)+] = 0.8(10e−2) + 0.2(100e−0.2) = 17.4573.

5.2 Continuous Mixing

When the mixing distribution of the parameter Λ is continuous, the unconditional distribu-
tion of X can be expressed as an integral. In this case, we say that X follows a continuous
mixture distribution , whose unconditional cdf is given by

FX(x) =

∫
FX|Λ(x|λ)fΛ(λ)dλ,

where fΛ is the pdf of the mixing distribution Λ. Depending on the support of X and X|Λ,
the unconditional pdf/pmf of X is given by:

fX(x) =

∫
fX|Λ(x|λ)fΛ(λ)dλ, if X,X|Λ are continuous,

pX(x) =

∫
pX|Λ(x|λ)fΛ(λ)dλ, if X,X|Λ are discrete.

Example 5.2 Suppose that X|Θ ∼ Gamma(2,Θ), where Θ follows a single-parameter
Pareto distribution with shape parameter 1 and minimum value 10. Calculate P(X ≤ 15).
Solution:
The pdf of X|Θ = θ is given by

fX(x) =
1

θ2
xe−

x
θ , x > 0.
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The conditional cdf is thus

FX|Θ(x|θ) =
∫ x

0

1

θ2
te−

t
θ dt

= −1

θ
xe−

x
θ +

1

θ

∫ x

0

e−
t
θ dt

= 1− e−
x
θ − 1

θ
xe−

x
θ .

On the other hand, the pdf of Θ is given by

fΘ(θ) =
10

θ2
, θ > 10.

Hence, the unconditional cdf of X is given by

FX(x) =

∫ ∞

10

FX|Θ(x|θ)fΘ(θ)dθ

=

∫ ∞

10

(
1− e−

x
θ − 1

θ
xe−

x
θ

)(
10

θ2

)
dθ

=

∫ ∞

10

10

θ2
dθ − 10

∫ ∞

10

e−
x
θ

θ2
dθ − 10x

∫ ∞

10

e−
x
θ

θ3
dθ.

Notice that∫ ∞

10

10

θ2
dθ = 1,∫ ∞

10

e−
x
θ

θ2
dθ =

1

x

∫ ∞

10

d(e−
x
θ ) =

1− e−
x
10

x
,

x

∫ ∞

10

e−
x
θ

θ3
dθ =

∫ ∞

10

d(e−
x
θ )

θ
=

e−
x
θ

θ

∣∣∣∣∞
10

+

∫ ∞

10

e−
x
θ

θ2
dθ = −e−

x
10

10
+

1− e−
x
10

x
.

Hence, the unconditional cdf is given by

FX(x) = 1 + e−
x
10 − 20(1− e−

x
10 )

x
.

Finally,
P(X ≤ 15) = FX(15) = 0.1873.
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